Radical Cation [**3** + **21 Cycloadditions of 2H-Azirines. Mechanistic Studies Concerning the Intermediate Radical Cation+**

Felix Müller,^{1a} Jochen Mattay,^{*,1b} and Steen Steenken^{*,1c}

Organisch-Chemisches Institut der UniversitBt Miinster, Orlbnsring 23,D-48149 Miinster, Germany, and Max-Pkrnck-Institut far Strahlenchemie, Stiftstr., 34-36, 0-45470 Mlllheim, Germany

Received February 9, **1993**

The product of the ring opening of 3-aryl-substituted azirines under conditions of photoinduced electron transfer (PET) is shown to be not a nitrile ylide but a short-lived 2-azaallenyl radical cation. This species has been investigated by pulse radiolysis and γ -radiolysis techniques. The radical cation has an absorption band with λ_{max} at 485 nm. The lifetime of the radical cation is $\tau = 1.43$ *ps* in n-butyl chloride. The rate constant for the reaction of the radical cation with the imine 9 is 7.8×10^9 M⁻¹ s⁻¹. γ -Radiolysis in *n*-butyl chloride leads to the same products, i.e., an N-alkylated imidazole **as** in the case of PET.

Photoinduced 1,3-dipolar cycloadditions of azirines have been known for 20 years.² Irradiation into the $n-\pi^*$ bond of an aryl-substituted azirine ring **1** (at approximately 280 nm) leads to the opening of the ring and to the formation of an ylide **2.** This ylide is readily trapped with a dipolarophile like acrylonitrile forming 3 in 90% yield beside 10% of the 2-isomer **4** (Scheme I).

On the other hand, irradiation under the conditions of photoinduced electron transfer (PET)3 leads to a different ratio of products. Irradiation of an electron acceptor, 1,4 naphthalene dicarbonitrile (DCN), with 350-nm light enables an electron transfer from the azirine to the excited sensitizer to take place. After losing one electron, the azirine ring opens. Trapping with acrylonitrile shows a complete lack of diastereoselectivity in the formation of 314' (Scheme 11). This indicates that the reaction follows a path different from that in the absence of PET. In the case of similar reactions with other three-membered rings the intermediates generated under the conditions of PET have been formulated as radical cations,⁵ and therefore we suggest the analogous intermediates 5.4

Scavenger experiments with 2,2,2-trifluoroethanol (TFE) revealed the formation of two trapping products **7** and 8

under PET conditions, whereas direct irradiation only led to the formation of **8.'** This indicates a multistep mechanism in the case of the PET-mediated process, with **7** probably being formed from **6.** To obtain more information about the nature of the postulated⁴ radical cation **5,** we performed time-resolved spectroscopic studies. y-Radiation and electron-pulse radiolysis techniaues were *^YA** applied to obtain kinetic-data about the reaction. The reaction is of interest from a synthetic point of view since heterophane compounds⁶ and even a porphyrin system are accessible by this route.^{7a} A complete description of the preparative results has been reported recently.'

t Radical Ions and Photochemical Charge-Transfer Phenomena (Series A). 39. Cycloadditions (Series B). 42. Series A, Part 38: Müller, F.; **Mattay, J.** *Chem. Ber.* **1993,126,543. Series B, Part 41: see Series A, part 38.**

^{(1) (}a) Univemitllt MWster. Pressent address: Th.Goldschmidt AG, Essen. (b) Universität Münster. (c) Max-Planck-Institut.

^{(2) (}a) Padwa, A. In *Synthetic Organic Photochemistry*; Horspool, W., Ed.; Plenum: New York, 1984; p 313. (b) Heimgartner, H. *Angew.*
Chem., Int. Ed. Engl. 1991, 30, 238. (c) Hansen, H.-J.; Heimgartner, H. **In** *1,SDipolar Chemistry;* **Padwa, A., E&.; Wiley: New York, 1984; Vol. I, p 177. (d) Gerber, U.; Heimgartner, H.; Schmid, H.; Hansen, H.-J.** *Heterocycles* **1977, 6, 143. (e) Padwa, A.; Dharan, M.; Smolanoff, J.; Wetmore, S. I., Jr.** *J. Am. Chem.* **SOC. 1973,96,1946.** *(0* **Huiegen, R. In** 1,3-Dipolar Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; Vol. I, p 1.

^{(3) (}a) Mattay, J.,Ed. *Topics in Current Chemistry;* **Springer: Berlin,** 1990; Vol. 156; 1990; Vol. 158; 1991; Vol. 159; 1992; Vol. 163. (b) Fox, M. A., Chanon, M., Eds. Photoinduced Electron Transfer; Elsevier: Am**sterdam, 1988; Parta A-D.** *(c)* **Mattay, J.** *Angew. Chem., Znt. Ed. Engl.* **1987,26,825. (d) Mattay, J.** *Synthesis* **1989,233. (e) MiUler, F.; Mattay,**

J. Chem. Rev. 1993, 93, 99.

(4) Müller, F.; Mattay, J. Angew. Chem., Int. Ed. Engl. 1991, 30, 1336.

(5) (a) Albini, A.; Arnold, D. R. Can. J. Chem. 1978, 56, 2985. (b) Caër,

(5) (a) Albini, A.; Laurent, E.; Tardivel, R.

⁽⁶⁾ MtUler, F.; Mattay, J. *Angew. Chem., Znt. Ed. Engl.* **1992,31,209. (7) (a) Miiller, F.; Karwe, A.; Mattay, J.** *J. Org. Chem.* **1992,67,8080. (b) MiUler, F.; Mattay, J.** *Chem. Ber.* **1998,126,643.**

Experimental Section

The synthesis of the azirines has been described.⁸ Solvents were of spectroscopic purity.

Preparative γ -irradiations were performed at the Max-Planck-Institut with a ⁶⁰Co-source. The products were identified with GC and GC-MS techniques.

Electron-pulse radiolysis and 248-nm laser photolysis exper-
iments were made at the Max-Planck-Institut. n -Butyl chloride waa used **aa** solvent for the pulse radiolysis and y-radiolysis experiments. A 3-MeV van de Graaf accelerator was used that delivered 100-ns pulses with doses such that \sim 1-2 μ M radicals were produced. The time-dependent absorption changes were digitized with Tectronix 7612 and 7912 transient recorders interfaced with a DEC LSI11/73+ computer for process control and on-line preanalysis of the obtained data. The final data analysis was performed on a Microvax I1 connected with the LSI via Ethernet.⁹

Results and Discussion

An attempt was made to generate radical cations from the azirine by photoionization with 248-nm laser light. However, in the solvent cyclohexane as well as in acetonitrile the spectra observed could be quantitatively accounted for in terms of the ylide **2,** in agreement with literature data.^{10,11}

Therefore, in order to generate radical cations from azirines pulse radiolysis techniques were applied using alkyl chlorides **as** solute.12 Alkyl halide solvent is ionized by the radiation. The resulting solvent radical cation oxidizes the azirine 1 (2,3-diphenylazirine, DPA), leading to the 2-azaallenyl radical cation,¹³ which can be compared in its reactivity and selectivity with that¹⁴ generated with the PET process.

Electron Pulse Radiolysis Experiments. The effect of an electron pulse on a solution of DPA **(1)** in a

of an electron pulse on a solution of DPA (1) in a
halogenated solvent is shown in eq 1. A solution of 4 mM

$$
n\text{-BuCl}
$$
 $\not\rightarrow n\text{-BuCl}^{*+} + e^{-}$
 $e^{-} + n\text{-BuCl} \rightarrow n\text{-Bu}^{*} + \text{Cl}^{-}$
 $n\text{-BuCl}^{*+} + \text{DPA} \rightarrow n\text{-BuCl} + \text{DPA}^{*+}$ (1)

1 in n-butyl chloride was irradiated with electron pulses. Figure 1 shows the spectrum obtained. A large peak at 370 nm and a smaller one at 485 nm are observed. The first peak has a rather long lifetime; it is assigned to the ylide.^{10,11} The second peak is short lived. The lifetime obtained from the spectrum is $\tau = 1.43 \mu s$. The species does not react with oxygen (saturated); therefore, it is not a triplet. If the peak at 485 nm is indeed the 2-azaallenyl radical cation **5,** it should be quenched selectively by the arylaldimine 9, as found by product analysis^{4,7b} under PET conditions (see Scheme III).¹⁸ Under these conditions the addition of **9** to the reactive intermediate leads (via backelectron transfer and an oxidation step) to the imidazole **10.4Jb** A side reaction is the back-electron transfer before

Figure 1. Absorption spectra upon electron-pulse radiolysis of $4 \text{ mM } 2,3$ -diphenylazirine (1) in *n*-butyl chloride, deoxygenated with argon. Points were recorded at times after the end of the pulse of 2.5-2.8 **pa** (l), **3.5-4.0** *pa* (2), and 9.0-10.0 *pa* (3).

cycloaddtion. This results in formation of the ylide **2** which can neither form the starting azirine nor react with the imine compound, and therefore it eventually produces the diazabicyclic compound **11** , **as** described by Padwa.ls The absorption spectrum of the species formed on pulse radiolysis of a n-butyl chloride solution containing **20** mM **1** and 2 mM **9** is depicted in Figure 2.

As expected on the basis of these considerations the peak at 485 nm is completely quenched by the addition of imine with a concentration only 10% of that of the azirine. The ylide peak is not significantly changed by the addition of the imine 9. The investigation of the irradiated solution by means of **GC-MS** revealed the formation of small quantities of the imidazole **10,** by comparison with the mass spectrum of an authentic **sam**ple obtained by photochemical synthesis.^{4,16}

The rate constant for reaction of **5** with imine 9 was measured by observing the quenching of the 485-nm absorption as a function of $[9]$. The relation between k_{obsd} for decay of **5** (2 mM) and the imine concentration was linear up to **10%** imine added, giving a rate constant of

^{, 89 (}a) Fowler, F. W.; Hassner, A.; Levy, L. A. J. Am. Chem. Soc. 1967)
89, 2077. (b) Hassner, A.; Fowler, F. W. J. Am. Chem. Soc. 1968, 90, 2369.
(9) (a) Jagannadham, V.; Steenken, S. J. Am. Chem. Soc. 1984, 106,

^{6542.} (b) **Bartl,** J.; **May, H.; Steenken, S.** *J. Am. Chem. SOC.* **1990,112, 6918.**

⁽¹⁰⁾ Padwa, A.; Rosenthal, R. J.; **Dent, W.;** Filho, **P.; Turro, N. J.;**

Hrovat, D. A.; Gould, I. R. *J. Org. Chem.* 1984, 49, 3174.
(11) Naito, I.; Morihara, H.; Ishida, A.; Takamuku, S.; Isomura, K.;
Taniguchi, H. *Bull. Chem. Soc. Jpn.* 1991, 64, 2757.

⁽¹²⁾ McClelland, R. A.; Mathivana, N.; Steenken, S. *J. Am. Chem. SOC.* **1990,112,4857.**

⁽¹³⁾ Wiuthwein, E. U. *J. Org. Chem.* **1984, 49, 2971.**

⁽¹⁴⁾ Shida, T. *Electronic Absorption Spectra of Radical Ions;* **Elsevier: Amsterdam, 1988.**

⁽¹⁵⁾ Padwa, A.; Dharan, M.; Smolanoff, **J.; Wetmore, S. I., Jr.** *J. Am. Chem. SOC.* **1973,95,1954.**

⁽¹⁶⁾ (a) Stoeck, V.; Schunack, W. *Arch. Pharm. (Weinheim)* **1974,307, 922.** (b) **Sattler, H.** J.; **Stoeck, V.; Schunack, W.** *Arch. Pharm.* (*Weinheim)* **1978,311, 736.**

Figure 2. Absorption spectra upon electron-pulse radiolysis of 20 **mM** 2,3-diphenylazirine **(1)** and 2 **mM** n-propylbenzaldimine **(9)** in n-butyl chloride, deoxgenated with argon. **Points** were recorded at times after the end of the pulse of $2.9-3.1 \mu s$ (1), 9.0-10.0 μ s (2), and 90-100 μ s (3).

 $k = 7.8 \times 10^9$ M⁻¹ s⁻¹ of 5 with 9. This high rate is characteristic for diffusion-controlled reactions in n-butyl chloride. It differs remarkably from rate constants obtained for the reactions of the ylides of DPA 1¹⁰ and 3-biphenylazirinell with acrylonitrile **as** dipolarophile, **as** these are $k = 1.2 \times 10^6$ M⁻¹ s⁻¹ and $k = 2.3 \times 10^6$ M⁻¹ s⁻¹, respectively.

Product Analysis of γ -Radiation Experiments and Spectroscopy at 77 K. Under the conditions of γ -radiation the imine 9 was introduced in concentrations $\leq 20\%$ of that of the azirine in order to minimize ionization of the imine as starting process for the cycloaddition.

Chloroform was used **as** the solvent. The maximum yield of the imidazole **10** achieved was 29%. (The yield of **10** is 87 % under the conditions of preparative PET.)4 Other halogenated solvents (n-butyl chloride, carbon tetrachloride) gave poorer yields. The formation of **10** strongly supports the idea that the reactive intermediate of the PET-controlled reaction of azirines is a radical cation. The spectroscopic investigation of species generated by γ -radiation is possible at low temperatures.¹⁷ A solution of 30 mM **1** in a **1:l** mixture of Freons F11/F114B was irradiated with ${}^{60}Co\gamma$ -rays at 77 K, to a total dose of *500* krad. The absorption spectrum exhibits a large peak at 485 nm and a small peak at 360 nm (Figure 3). The

Figure 3. Absorption spectra upon ${}^{60}Co\text{-}\gamma$ -radiolysis of 30 mM 2,3-diphenylazirine **(1)** in freon at **77** K.

small peak has the same position **as** the ylide **2,** whereas the large peak can be attributed to a 2-azaallenyl radical cation **5.** This is more stable at low temperature. The occurrence of the ylide is explained either by direct formation from the excited solvent species formed by γ -radiolysis or by back-electron transfer of the radical cation.

Conclusion

It has been shown that the $[3 + 2]$ cycloaddition of azirines under conditions of photoinduced electron transfer differs from the 1,3-dipolar cycloaddition of nitrile ylides obtained from azirines by energy transfer. The new intermediate in the first case is a 2-azaallenyl radical cation. The radical cation of 2,3-diphenylazirine **1** has been generated by two independent techniques, showing an absorption at **485** nm in both cases. Its lifetime has been measured to be $\tau = 1.43 \mu s$ in *n*-butyl chloride at room temperature. Quenching with an imine **as** a specific substrate for radical cations enabled differentation between ylide and radical cation. The reaction of **5** with the imine 10 proceeds with $k = 7.8 \times 10^9$ M⁻¹ s⁻¹. Further investigations of different azirine substrates are in progress.

Acknowledgment. We thank Prof. Dr. Thomas Bally and Leo Truttmann for the investigation of the γ -radiation spectra. Support by the Deutsche Forschungsgemeinschaft, the Minister fiir Wissenschaft und Forschung NRW, the Fonds der Chemischen Industrie, and Bayer **AG** is gratefully ackowledged.

⁽¹⁷⁾ Bally, Th.; Truttmann, L. private communication.

⁽¹⁸⁾ One reviewer pointed to the possibility of the oxidation of 2 to 5 via single electron transfer to excited-state DCN. This pathway cannot be completely ruled out although it appears to be lean probable for the following reasons: The calculated free enthalpies of electron transfer from the azirines to singlet excited DCN are negative according to the Weller equation (Müller, F. PhD-Thesis, University of Münster, 1992). **Ab initio calculations indicate a spontaneous** ring **opening of the** *azirine* a formation of 5 via the ylide 2 would require two photons, one for the process $1 \rightarrow 2$, the other for the oxidation step.